

Course: Global Energy Transitions and Climate Policy

lecture 4. Systems Integration of Renewable Energy Sources

Dr. Behnam Zakeri

Energy, Climate, and Environment Program

International Institute for Applied Systems Analysis, IIASA, Austria

This presentation is licensed under a Creative Commons Attribution 4.0 International License

The Agenda Today

Part 1: Renewable Energy Systems

- Energy and climate change (continue)
- Global trends in penetration of renewable energy
- Potentials and challenges

Part 2: Energy storage systems

Terminology (reminder)

Energy system

system

Renewable energy systems

Energy Consumption History (recap)

- World primary energy use in 2015
- Huge dependence on fossil fuels

Greenhouse Effect

Image: http://pinterest.com/charleswelsh

Greenhouse gases: CO2, CH4, N2O, O3, CFC, H2O vapor

Image: http://steemit.com/

Global Carbon Cycle

- Carbon pools: oceans, soils, plants, earth's crust
- Human induced GHGs the biggest imbalance in the cycle

Human induced GHGs = 7.7 Pg or Gt (billion tonnes)

Image: http://pinterest.com/charleswelsh

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget 2009.

Image: http://puassignmentmtng.rkorakot.me

Temperature Rise

The target: try to keep the temperature rise well below 2°C by the year 2100

Climate Change Effects

Question:

discuss the main climate change Impacts and consequences in your group

Climate Change Effects (cont.)

- Direct effects:
- Higher temperatures
- Agriculture failure
- Altered weather patterns
- Homelessness
- Ocean acidification
- Marine ecosystem shift
- Sea level rise

- Indirect effects:
- Mass migration
- Economic disruption
- Malnutrition
- Social unrest
- Displacement
- Infectious disease spread

Image: http://ecological.blog.com

GHGs may generate a Hothouse

• Hothouse state:

Human is not able to stop the process → Domino Effect

Environment

Earth at risk of entering 'hothouse' state from which there is no return, scientists warn

'In the context of the summer of 2018, this is definitely not a case of crying wolf... the wolves are now in sight'

Josh Gabbatiss Science Correspondent | @josh_gabbatiss | 4 hours ago | 🖵 15 comments

What is the solution?

"If there are to be problems, may they come during my life-time so that I can resolve them and give my children the chance of a good life."

Kenyan proverb

https://www.weforum.org/

Measures for reducing carbon footprint

https://greenrestoration.ie/principles-of-carbon-footprint-reduction/carbon-footprint-breakdown/

Renewable Energy in the Energy Mix

• Available and replaceable in a sustainable way

Types of renewable energy:

Share from Global Final energy, Image: http://reneweconomy.com

Renewable Energy Potential

- World annual energy needs:
 16 TW-yr
- Solar and wind two biggest
 renewable energy resources

Solar PV

- Small-scale: household
- Large scale: solar PV farms
- Modular, quick, no water needs, maintenance-free
- Distributed and off-grid generation
- Often peak-demand following
- Economically competitive:

In many places in the world, the cheapest option for new capacity **Globally 627 GW installed by 2019**

SOLAR PANEL IAGRAM Electron Flow "Hole" "Hole"

Images: http://dosolar.com.au above and https://ren21.net

FIGURE 29. Solar PV Global Capacity, by Country and Region, 2009-2019

Solar PV Capacity Additions

• 40% growth in 2019 compared to 2018

https://ren21.net

• As cheap as 0.014 \$/kWh: a choice also for developing countries

17

Wind Power

- Modular and distributed
- Onshore and offshore
- Large scale production (wind farms)
- Economically competitive
- Technology improvements

(higher capacity factor, bigger turbines)

- 651 GW global capacity by 2019
- China the leading country

• India, the third country in capacity additions in 2019

https://ren21.net

Investments in New Power Capacity

FIGURE 52. Global Investment in New Power Capacity, by Type (Renewables, Coal, Gas and Nuclear Power) 2019

Image: http://ren21.net

Share of Wind and Solar in Electricity

- RE more in the electricity sector
- 60% of electricity in Denmark from mainly wind and solar

Levelized Cost of Electricity (LCOE)

- Indicator for the cost of one unit of electricity generated by a power plant
- Net present value (NPV) of the costs over lifetime divided by total electricity generated

LCOE 💳

NPV of Total Costs Over Lifetime

NPV of Electrical Energy Produced Over Lifetime

I: investment costs

M: maintenance costs (disposal, etc.)

F: fuel costs

E: total electricity generated

LCOE =
$$\frac{\sum \frac{(I_t + M_t + F_t)}{(1 + r)^t}}{\sum \frac{E_t}{(1 + r)^t}}$$

LCOE of Renewables vs. Conventional

Levelized Cost of Energy Comparison—Unsubsidized Analysis

Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances

Image: Lazard Consultancy

Challenges in Integration of Renewables

• Question:

what are the main challenges in increasing the share of renewables in our final energy use?

Some Intermittency Challenges

- Variable renewable energy (solar and wind)
- Temporal and locational variability
- Need for huge backup capacity in high shares of VRE
- Grid connection (windy areas far from the grid)
- Reliability, firm capacity (e.g., peak time): backup capacity
- Capacity credit (capacity value): capacity available at peak time (wind and solar = 10-15%)
- Ramp-up and ramp-down of thermal plants = additional cost for them

What's the challenge?

• Challenge in large scale integration of variable renewable energy (wind, PV)

Mothersagainstwindturbine.com

https://uncomfortableknowledge.com/decarbonization-of-electricity-production/

Energy storage systems

"I can't change the direction of the wind,

but I can adjust my sails to always reach my destination."

Attributed to Jimmy Dean

Solutions for Intermittency Challenge

- Grid interconnectivity: connecting homes/communities/cities/ countries together to balance variability
- Electricity storage: storing excess electricity to be used later
- **Demand response:** changing electricity demand to respond to variability
- **Power-to-heat:** converting electricity to heat

. . .

- **Power-to-fuel:** converting electricity to fuels (like hydrogen, methane, etc.)

What is electricity storage?

Storing electricity to be used later (in the same form) at a reasonable response time

• Electricity storage = electrical energy storage (EES)

Electricity storage in this study:

Stationary, grid-connected, Utility scale (medium to large scale), rechargeable

Not including:

Electric vehicles (dump charge), energy management, fuel storage, residential scale end-user, etc.

Functionality of EES (in general)

1.Charge: receiving power, converting it to a type of storable energy

2.Storage unit: storing energy and preventing from losing its value over time

3.Discharge: converting energy back into power, when required

Motivation for further research on EES

- Variable renewables and need for integrating them
- Deregulated markets and high capital cost for peak demands
- High investment costs of grid infrastructure for reliability improvement
- Price improvement of EES technologies (e.g., batteries)
- Smart energy systems and the need for smart use of energy ...

Electricity storage technologies

- Mechanical:
 - Pumped hydro-electricity storage (PHS) Compressed air energy storage (CAES) Flywheel
- Electrochemical:
 - Batteries (lead-acid, NaS, Li-ion, etc.) Flow batteries (e.g. VRFB)
- Other (chemical, electromagnetic, ...) Hydrogen storage, SMES ultracapacitors, etc.

Pumped hydropower storage (PHS)

- The most common EES
- The largest PHS is 3000 MW (Bath County PHS, USA)
- + High efficiency (75-85%)
- + No fuel and emissions
- + Long discharge time (8-24 hr)
- + Low O&M requirements
- + Low generating costs
- + Long lifetime
- Large and long projects
- Site-specific
- Environmental permitting
- Capital intensive

Image source: cleanbalancepower.com

EES technologies: Prospects for PHS

• Underground PHS, sea water reservoir, multi-purpose reservoir, pressurized water (Link to a

PHS project, Link to the video of a pressurized PHS)

Yanbaru Okinawa PHS, Agency of Natural Resources and Energy, Japan

Sea water PHS

Compressed air energy storage (CAES)

- Second commercial technology for large-scale storage
- Two operating plants worldwide: 320 MW in Germany and 110 MW in USA
- Pressurized air is stored in salt caverns, natural aquifers, depleted gas reservoirs or aboveground vessels
- Advanced CAES without fuel needs
- + Long discharge time
- + Proven and commercial technologies
- + Large scale plants possible
- Fuel and emissions (conventional CAES)
- Rather low efficiency (42% without and 54% with recuperator)
- Costs uncertain if fueled with natural gas

Flywheel energy storage

- Commercially available
- Based on the use of rotational energy
- Suitable for power quality services and ride-through
- Applicable to mobile services

(rail vehicles and automobile industry)

- + High efficiency (85%) and long life cycles
- + Low response time (millisecond)
- + No fuel, spill, hazard,...
- + Scalable, 20 MW plant in New York for frequency regulation
 - Not suitable for energy-related services

Electrochemical batteries

- A wide range of technologies available (based on material and process): leadacid, Ni-Cd, Li-ion, NaS, ZEBRA, etc.
- Suitable both for power and energy-related services
- Most concerns related to toxicity, material intensity, air conditioning needs, etc.
- From rather low efficiency to improved efficiency (e.g., Li-ion)
- Limited life cycle and lifetime resulting in high replacement costs (e.g., lead-acid)
- Large batteries so far around 30-40 MW (70 MW NaS project in future to Italy)

34 MW NaS battery connected to 51 MW wind farm, NGK Insulator, Japan

Hydrogen energy storage

- By electrolysis process, water is decomposed to hydrogen and oxygen
- Hydrogen storage in tanks, reservoirs, even natural gas pipelines (up to 5%)
- Stored hydrogen can be utilized in fuel cells or thermal engines
- + Long-term storage
- + Technology available
- + Different energy carriers
- + High energy density
- Low efficiency (35-42%)
- High capital and O&M costs

Power to gas energy storage

- Hydrogen reacts with CO2 and produces synthesized methane (natural gas)
- Can be integrated with carbon capture and storage (CCS) processes
- + Different technologies available for storage, transfer, and conversion back to power
- + Long-term storage
- + Different energy carriers
- + High energy density
- Low efficiency (32-40%)
- Expensive

Think more about power to gas!

- A full range of energy carriers (power, heat, and transport fuel)
- Increasing system flexibility, is it an ultimate solution?
- New concepts: sail energy, wind fuel, power fuel, etc.

www.segelenergie.de

Electricity storage in power systems

 In late1880s, EES were the original solution for night-time load in New York City private area (lead-acid battery)

Group exercise: benefits (services) of storage

• Discuss with your group members:

- What are the use cases and benefits of electricity storage?
- Who benefits from storage in that service? (e.g., electricity generator, system operator, end user, etc.)

Applications of electricity storage

- Wholesale energy services (bulk storage, arbitrage, ancillary services, and frequency regulation)
- Renewable integration
- T&D support
- Distributed EES

Applications of electricity storage (2)

- Benefits of EES should be first monetized/valued
- Benefits depend on the market design

Energy Arbitrage

- Charging in low power prices to sell at peak times → power price difference must be higher than marginal costs of EES
- Daily charge/discharge cycles or longer periods (from weekends to weekdays)

Role of storage in balancing markets

- Balancing market are growing as a result of higher RE integration
- In balancing market, EES can make revenues both in charging (down-regulation) and discharging (up-regulation)
- Some EES technologies are able to charge/discharge simultaneously

Aggregation of benefits of storage

EES potential for several applications → aggregation of benefits

Goal: Making business model

Source: Electric Power Research Institute (EPRI)

Gas turbine vs. electricity storage

- + Second time ramp
- ++ 200 MW flexible range
- + 95% useable hours
- + Reduction of emissions
- + Fast project implementation

2. Application for peaking plants (CF=5%):

LCOE for gas turbine 360, and for lead-acid battery 280-320 €/MWh

→ It's not always correct to compare the costs in €/kW or €/MWh (what criterion so!?)

Challenges and limitations of energy storage

- Today, lack of information regarding economy of EES is a barrier
- No free markets in some services that EES is a good candidate
- Regulatory supports should be defined by cost-benefit analysis
- Other system-level impacts of EES should be evaluated (RES integration)
- Effect of high penetration of EES in energy markets (self-competition)
- Scheduling, forecasting, and allocation in aggregation of the benefits
- Toxicity, material intensity, and environmental impacts of EES

Final notes

- EES is not a panacea → comparison with alternatives required
- More commercialization is needed to evaluate costs/benefits in practice
- Economic features of EES should be clarified for defining business models (ownership structure) and regulatory incentives
- Other alternatives and their impact on the development of EES → for example, "smoothing effect" of renewables in large-scale integration
- Impact of EU-level power markets with high capability of power exchange
- System-level impacts of EES and study of its socio-environmental benefits

Further reading

• Our world in data (very useful visuals): <u>https://ourworldindata.org/renewable-energy</u>

- Database of EES projects worldwide: <u>http://www.energystorageexchange.org/projects</u>
- DOE energy storage handbook: <u>http://www.sandia.gov/ess/publications/SAND2013-5131.pdf</u>

• Gravity-based EES by rail vehicles (see the video): <u>http://www.aresnorthamerica.com/</u>

• Mountain Gravity Energy Storage: <u>https://doi.org/10.1016/j.energy.2019.116419</u>

Further reading: policy and economics

- Some articles related to policy, regulation, and market-economics of energy storage:
- Sani SB, Celvakumaran P, Ramachandaramurthy VK, Walker S, Alrazi B, Ying YJ, et al. Energy storage system policies: Way forward and opportunities for emerging economies. J Energy Storage 2020;32:101902. https://doi.org/10.1016/j.est.2020.101902.
- Gardiner D, Schmidt O, Heptonstall P, Gross R, Staffell I. Quantifying the impact of policy on the investment case for residential electricity storage in the UK. J Energy Storage 2020;27:101140. https://doi.org/10.1016/j.est.2019.101140.
- Castagneto Gissey G, Subkhankulova D, Dodds PE, Barrett M. Value of energy storage aggregation to the electricity system. Energy Policy 2019;128:685– 96. https://doi.org/10.1016/j.enpol.2019.01.037.
- Zame KK, Brehm CA, Nitica AT, Richard CL, Schweitzer GD. Smart grid and energy storage: Policy recommendations. Renew Sustain Energy Rev 2018;82:1646–54. https://doi.org/10.1016/j.rser.2017.07.011.
- Castagneto Gissey G, Dodds PE, Radcliffe J. Market and regulatory barriers to electrical energy storage innovation. Renew Sustain Energy Rev 2018;82:781–90. https://doi.org/https://doi.org/10.1016/j.rser.2017.09.079.
- Zakeri B, Syri S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew Sustain Energy Rev 2015;42. https://doi.org/10.1016/j.rser.2014.10.011.
- When I showed the slide related to (Vanadium- Redox) flow batteries, some of you looked a little skeptic. See how politicians think about it: <u>https://www.youtube.com/watch?v=iBgENqVLJLs</u>

• Thank you for your attention!

Dr. Behnam Zakeri

Research Scholar (Energy, Climate, and Environment Program) International Institute for Applied Systems Analysis (IIASA) Schlossplatz 1, A-2361 Laxenburg, Austria | <u>www.iiasa.ac.at</u>

Email: zakeri@iiasa.ac.at; Publications: Google Scholar

