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The Agenda Today

Part 1: Renewable Energy Systems

- Energy and climate change (continue)

- Global trends in penetration of renewable energy

- Potentials and challenges

Part 2: Energy storage systems

Image: https://esa-africa.com
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Terminology (reminder)

Primary energy: raw, unprocessed Final energy: ready to be used

Energy system
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Lecture 3.1.

Renewable energy systems
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Energy Consumption History (recap)

• World primary energy

use in 2015

• Huge dependence on 

fossil fuels

Image: http://ourrenewablefuture.org/
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Greenhouse Effect

Greenhouse gases: CO2, CH4, N2O, O3, CFC, H2O vapor
Image: http://steemit.com/Image: http://pinterest.com/charleswelsh
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Global Carbon Cycle

• Carbon pools: oceans, soils, plants, 

earth’s crust

• Human induced GHGs the biggest

imbalance in the cycle

Human induced GHGs = 7.7 Pg or Gt (billion tonnes)

Image: http://puassignmentmtng.rkorakot.me

Image: http://pinterest.com/charleswelsh
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Temperature Rise

Image: http://vox.comImage: http://newscientist.com

• The target: try to keep the 

temperature rise well below 2°C

by the year 2100
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Climate Change Effects

Image: http://vox.com

Question: 

discuss the main climate change effects in

Impacts and consequences

in your group
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Climate Change Effects (cont.)

Image: http://ecological.blog.com

• Direct effects: 

• Higher temperatures

• Agriculture failure

• Altered weather patterns

• Homelessness

• Ocean acidification

• Marine ecosystem shift

• Sea level rise 

• Indirect effects:

• Mass migration

• Economic disruption

• Malnutrition

• Social unrest

• Displacement

• Infectious disease spread
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GHGs may generate a Hothouse

• Hothouse state:

Human is not able to stop the

process ➔ Domino Effect
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What is the solution?

https://www.weforum.org/

"If there are to be problems, may they come during 

my life-time so that I can resolve them and give my 

children the chance of a good life."

Kenyan proverb
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Measures for reducing carbon footprint

https://greenrestoration.ie/principles-of-carbon-footprint-reduction/carbon-footprint-breakdown/

13



Renewable Energy in the Energy Mix

• Available and replaceable in a sustainable way

Types of renewable energy:

• Solar

• Wind

• Biomass

• Hydro

• Geo-thermal

• Ocean/wave/tidal

• …
Share from Global Final energy, Image: http://reneweconomy.com
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Renewable Energy Potential

• World annual energy needs:

16 TW-yr

• Solar and wind two biggest

renewable energy resources

Image: http://waitbutwhy.com
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Solar PV

• Small-scale: household

• Large scale: solar PV farms

• Modular, quick, no water needs, maintenance-free

• Distributed and off-grid generation

• Often peak-demand following 

• Economically competitive:

In many places in the world, the

cheapest option for new capacity

Globally 627 GW installed by 2019

Images: http://dosolar.com.au above and  https://ren21.net
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Solar PV Capacity Additions

• 40% growth in 2019 compared to 2018

• As cheap as 0.014 $/kWh: a choice also for developing countries

https://ren21.net
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Wind Power

• Modular and distributed

• Onshore and offshore

• Large scale production (wind farms)

• Economically competitive

• Technology improvements

(higher capacity factor, bigger turbines)

• 651 GW global capacity by 2019

• China the leading country

• India, the third country in capacity additions in 2019 https://ren21.net
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Investments in New Power Capacity

Image: http://ren21.net
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Share of Wind and Solar in Electricity

Image: http://ren21.net

• RE more in the electricity sector

• 60% of electricity in Denmark from mainly wind and solar
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Levelized Cost of Electricity (LCOE)

• Indicator for the cost of one unit of electricity generated by a power plant

• Net present value (NPV) of the costs over lifetime divided by total electricity generated

I: investment costs

M: maintenance costs (disposal, etc.)

F: fuel costs

E: total electricity generated
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LCOE of Renewables vs. Conventional

• Indicator for the cost of one unit of electricity generated by a power plant

Image: Lazard Consultancy 22



Challenges in Integration of Renewables

• Question:

what are the main challenges in increasing the 

share of renewables in our final energy use?
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Some Intermittency Challenges

• Variable renewable energy (solar and wind)

• Temporal and locational variability

• Need for huge backup capacity in high shares of VRE

• Grid connection (windy areas far from the grid)

• Reliability, firm capacity (e.g., peak time): backup capacity

• Capacity credit (capacity value): capacity available at peak time (wind and 

solar = 10-15%)

• Ramp-up and ramp-down of thermal plants = additional cost for them
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What’s the challenge?

• Challenge in large scale integration of variable renewable energy (wind, PV)

https://uncomfortableknowledge.com/decarbonization-of-electricity-production/Mothersagainstwindturbine.com
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Lecture 3.2.

Energy storage systems

“I can't change the direction of the wind, 

but I can adjust my sails to always reach my destination.”

Attributed to Jimmy Dean
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Solutions for Intermittency Challenge

- Grid interconnectivity: connecting homes/communities/cities/ countries together to 

balance variability

- Electricity storage: storing excess electricity to be used later

- Demand response: changing electricity demand to respond to variability

- Power-to-heat: converting electricity to heat

- Power-to-fuel: converting electricity to fuels (like hydrogen, methane, etc.)

- …
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What is electricity storage?

Storing electricity to be used later (in the same form) at a reasonable response time

• Electricity storage = electrical energy storage (EES)

Electricity storage in this study:

Stationary, grid-connected, Utility scale (medium to large scale), rechargeable

Not including:

Electric vehicles (dump charge), energy management, fuel storage, residential scale 

end-user, etc.
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(3)

(2)

(1) 

Functionality of EES (in general)

1.Charge: receiving power, converting it to a type of storable energy

2.Storage unit: storing energy and preventing from losing its value over time

3.Discharge: converting energy back into power, when required
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Motivation for further research on EES

• Variable renewables and need for integrating them

• Deregulated markets and high capital cost for peak demands 

• High investment costs of grid infrastructure for reliability improvement

• Price improvement of EES technologies (e.g., batteries)

• Smart energy systems and the need for smart use of energy …
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Electricity storage technologies
• Mechanical: 

Pumped hydro-electricity storage (PHS) 

Compressed air energy storage (CAES)

Flywheel

• Electrochemical:

Batteries (lead-acid, NaS, 

Li-ion, etc.)

Flow batteries (e.g. VRFB)

• Other (chemical, electromagnetic, …)

Hydrogen storage, SMES 

ultracapacitors, etc.  

Source: SBC ENERGY Institute
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Pumped hydropower storage (PHS)

• The most common EES

• The largest PHS is 3000 MW

(Bath County PHS, USA)

+ High efficiency (75-85%)

+ No fuel and emissions

+ Long discharge time (8-24 hr)

+ Low O&M requirements

+ Low generating costs

+ Long lifetime

- Large and long projects 

- Site-specific

- Environmental permitting

- Capital intensive 32



EES technologies: Prospects for PHS

• Underground PHS, sea water reservoir, multi-purpose reservoir, pressurized water (Link to a 

PHS project, Link to the video of a pressurized PHS)

Yanbaru Okinawa PHS, Agency of Natural Resources and 
Energy, Japanwww.gravitypower.net

Sea water PHS

Pressurized PHSDischarge Charge

33

http://www.axpo.com/axpo/ch/en/about-us/production-facilities/hydro-energy/linthal.html
https://www.youtube.com/watch?v=vNyyILVkQP0&list=UUGd3kBT9T8_hMCUbQLcd2eg


Compressed air energy storage (CAES)

• Second commercial technology for large-scale storage

• Two operating plants worldwide: 320 MW in Germany and 110 MW in USA 

• Pressurized air is stored in salt caverns,

natural aquifers, depleted gas reservoirs

or aboveground vessels

• Advanced CAES without fuel needs

+     Long discharge time

+     Proven and commercial technologies

+     Large scale plants possible

- Fuel and emissions (conventional CAES)

- Rather low efficiency (42% without and 

54% with recuperator)

- Costs uncertain if fueled with natural gas

PG&E (www.pge.com) 34

http://www.pge.com/en/about/environment/pge/cleanenergy/caes/index.page?


Flywheel energy storage

• Commercially available

• Based on the use of rotational energy

• Suitable for power quality services and ride-through 

• Applicable to mobile services 

(rail vehicles and automobile industry)

+     High efficiency (85%) and long life cycles

+     Low response time (millisecond)

+     No fuel, spill, hazard,…

+     Scalable, 20 MW plant in New York for

frequency regulation

Not suitable for energy-related services

Beacon Power 35

http://beaconpower.com/


Electrochemical batteries

• A wide range of technologies available (based on material and process): lead-

acid, Ni-Cd, Li-ion, NaS, ZEBRA, etc.

• Suitable both for power and energy-related services

• Most concerns related to toxicity, material intensity, air conditioning needs, etc.

• From rather low efficiency to improved efficiency (e.g., Li-ion)

• Limited life cycle and lifetime resulting in high replacement

costs (e.g., lead-acid)

• Large batteries so far around 30-40 MW 

(70 MW NaS project in future to Italy)

34 MW NaS battery connected to 51 MW wind farm, NGK 
Insulator, Japan
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• By electrolysis process, water is decomposed to hydrogen and oxygen

• Hydrogen storage in tanks, reservoirs, even natural gas pipelines (up to 5%)

• Stored hydrogen can be utilized in fuel cells or thermal engines

+    Long-term storage

+    Technology available

+    Different energy carriers

+    High energy density

- Low efficiency (35-42%)

- High capital and O&M costs

Hydrogen energy storage

Source: FuelCellToday 37

http://www.fuelcelltoday.com/analysis/analyst-views/2011/11-09-14-hydrogen-in-centralised-power-generation


• Hydrogen reacts with CO2 and produces synthesized methane (natural gas)

• Can be integrated with carbon capture and storage (CCS) processes

+    Different technologies available for storage, transfer, and conversion back to power

+    Long-term storage

+    Different energy carriers

+    High energy density

- Low efficiency (32-40%)

- Expensive

Power to gas energy storage

Source: Sterner, 2009
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• A full range of energy carriers (power, heat, and transport fuel)

• Increasing system flexibility, is it an ultimate solution?

• New concepts: sail energy, wind fuel, power fuel, etc.

Think more about power to gas!

www.segelenergie.de www.skysails.info 39

http://www.segelenergie.de/
http://www.skysails.info/


Electricity storage in power systems

• In late1880s, EES were the original solution for night-time load in New York City private area 

(lead-acid battery)

B) With EESA) Without EES
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Group exercise: benefits (services) of storage

• Discuss with your group members:

- What are the use cases and benefits of electricity 

storage?

- Who benefits from storage in that service? (e.g., 

electricity generator, system operator, end user, etc.)
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• Wholesale energy services (bulk storage, arbitrage, ancillary services, and 

frequency regulation)

• Renewable integration

• T&D support

• Distributed EES

18 applications with 

different requirements

Applications of electricity storage
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• Benefits of EES should be first monetized/valued

• Benefits depend on the market design

Applications of electricity storage (2)

Source: Electric Power Research Institute (EPRI)
43



• Charging in low power prices to sell at peak times ➔ power price difference 

must be higher than marginal costs of EES

• Daily charge/discharge cycles or longer periods (from weekends to weekdays)

• Knowledge or estimation of 

day-ahead power prices

➔ What is the impact of EES on

power prices?

(self-competition)

Energy Arbitrage
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• Balancing market are growing as a result of higher RE integration

• In balancing market, EES can make revenues both in charging (down-

regulation) and discharging (up-regulation)

• Some EES technologies are able to charge/discharge simultaneously

Role of storage in balancing markets

(Lund et al. 2012)
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• EES potential for several applications ➔ aggregation of benefits

Goal: Making business model

Aggregation of benefits of storage

Source: Electric Power Research Institute (EPRI)
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Gas turbine vs. electricity storage

100 MW gas turbine 

100 MW EES

(efficient use)

10 minute ramp

- 50 MW flexible range

- 20-30% useable hours/year

- Emissions

Source:EPRI

+ Second time ramp

++ 200 MW flexible range

+ 95% useable hours 

+ Reduction of emissions

+ Fast project implementation

1. Application in power regulation

2. Application for peaking plants (CF=5%): 

LCOE for gas turbine 360, and for lead-acid battery 280-320 €/MWh

➔ It’s not always correct to compare the costs in €/kW or €/MWh (what criterion so!?)
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• Today, lack of information regarding economy of EES is a barrier

• No free markets in some services that EES is a good candidate

• Regulatory supports should be defined by cost-benefit analysis

• Other system-level impacts of EES should be evaluated (RES integration)

• Effect of high penetration of EES in energy markets (self-competition)

• Scheduling, forecasting, and allocation in aggregation of the benefits

• Toxicity, material intensity, and environmental impacts of EES 

Challenges and limitations of energy storage
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• EES is not a panacea ➔ comparison with alternatives required

• More commercialization is needed to evaluate costs/benefits in practice

• Economic features of EES should be clarified for defining business models (ownership 

structure) and regulatory incentives 

• Other alternatives and their impact on the development of EES ➔ for example, “smoothing 

effect” of renewables in large-scale integration

• Impact of EU-level power markets with high capability of power exchange

• System-level impacts of EES and study of its socio-environmental benefits

Final notes 
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Further reading

• Our world in data (very useful visuals): https://ourworldindata.org/renewable-energy

• Database of EES projects worldwide: http://www.energystorageexchange.org/projects

• DOE energy storage handbook: http://www.sandia.gov/ess/publications/SAND2013-5131.pdf

• Gravity-based EES by rail vehicles (see the video): http://www.aresnorthamerica.com/

• Mountain Gravity Energy Storage: https://doi.org/10.1016/j.energy.2019.116419
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https://ourworldindata.org/renewable-energy
http://www.energystorageexchange.org/projects
http://www.sandia.gov/ess/publications/SAND2013-5131.pdf
http://www.aresnorthamerica.com/
https://doi.org/10.1016/j.energy.2019.116419


Further reading: policy and economics
• Some articles related to policy, regulation, and market-economics of energy storage:

• Sani SB, Celvakumaran P, Ramachandaramurthy VK, Walker S, Alrazi B, Ying YJ, et al. Energy storage system policies: Way forward and opportunities for 

emerging economies. J Energy Storage 2020;32:101902. https://doi.org/10.1016/j.est.2020.101902.

• Gardiner D, Schmidt O, Heptonstall P, Gross R, Staffell I. Quantifying the impact of policy on the investment case for residential electricity storage in the 

UK. J Energy Storage 2020;27:101140. https://doi.org/10.1016/j.est.2019.101140.

• Castagneto Gissey G, Subkhankulova D, Dodds PE, Barrett M. Value of energy storage aggregation to the electricity system. Energy Policy 2019;128:685–

96. https://doi.org/10.1016/j.enpol.2019.01.037.

• Zame KK, Brehm CA, Nitica AT, Richard CL, Schweitzer GD. Smart grid and energy storage: Policy recommendations. Renew Sustain Energy Rev 

2018;82:1646–54. https://doi.org/10.1016/j.rser.2017.07.011.

• Castagneto Gissey G, Dodds PE, Radcliffe J. Market and regulatory barriers to electrical energy storage innovation. Renew Sustain Energy Rev 

2018;82:781–90. https://doi.org/https://doi.org/10.1016/j.rser.2017.09.079.

• Zakeri B, Syri S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew Sustain Energy Rev 2015;42. 

https://doi.org/10.1016/j.rser.2014.10.011.

• When I showed the slide related to (Vanadium- Redox) flow batteries, some of you looked a little skeptic. See how politicians think about it: 

https://www.youtube.com/watch?v=iBgENqVLJLs
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https://www.youtube.com/watch?v=iBgENqVLJLs


• Thank you for your attention!
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